

AN019: MBUS4 ITALIAN AND CIG REQUIREMENTS

APPLICATION NOTE

MBUS4 and Italian CIG Requirements

Introduction

The Italian "CIG Interchangeability Task Force" has published UNI/TS 11291-11-4, Gas measurement systems – Hourly based gas metering systems, Part 11-4, Communication profile PM1.

This application note points out how the RC1701HP/VHP-MBUS4 module can be used to meet the requirements of this companion standard.

Configuration for CIG

The TS 11291-11-4 is a companion standard, on top of EN 13757-4 mode N and EN 13757-3, but using DLMS / COSEM as application layer. The TS 11291-11-4 specify some new requirements to the DLL/MAC (Dynamic Link Layer and Medium Access layer).

The CIG specification has introduced Listen Before Talk (LBT) as part of the medium access. The RF transmission power shall be configurable in 3 dB steps over a 54 dBm range (-27 dBm to +27/30 dBm). Further, the CIG use Frame Format B only.

Radiocrafts provides two variants of the RF module supporting these new requirements;

- RC1701HP-MBUS4, with up to 27 dBm output power
- RC1701VHP-MBUS4, with up to 30 dBm output power

The same configurations apply for both variants, although the maximum output power for the VHP variant is 30 dBm (setting 0x14), allowing one more output power step.

Use the settings in the table below to:

- Configure default radio channel
- Configure default data rate
- Set M-Bus mode for two-way communication (N2)
- Use Frame Format B
- Configure default output power, and using power control in fine steps
- Enable LBT
- Configure parameters for the LBT algorithm
- (optional) Use Category 1 receiver settings (improved selectivity and blocking properties)

Parameter	Description	Address hex	Argument hex	Factory setting hex (dec)	Comment
	Radio	configuration	for CIG		
RF_CHANNEL	Default RF channel for N mode	0x00	0x01-0x0A	0x03 (3)	See data sheet for channel frequencies
RF_POWER	Default RF output power	0x01	(not used)	0x05 (5)	See data sheet for output power levels

Page **2** of **9**

APPLICATION NOTE: AN019

DATA DATE		0.00	0.01 0.1	0.01.(1)	1
DATA_RATE	Data rate	0x02	0x01: 2.4	0x01 (1)	
			kbps		
			0x02: 4.8		
			kbps		
MBUS_MODE	M-Bus mode	0x03	0x10: N2	0x10 (16)	Use 'G'
			mode		command to
					change value in
					volatile memory
					only
PA_TABLE_EXTENDED	Default RF	0x06	0x14:	0x00	0: Disabled.
FA_TABLE_EXTENDED	output power,	0,00	Maximum	0,00	1 - 20 is on. See
	using fine steps		output		data sheet for
	using fine steps		power		output power
			power		levels
CAT1_ENABLE	Radio performance	0x07	0x00:	0x00	Improved
			Disabled		selectivity and
			0x01:		blocking
			Enabled		properties
			(optional)		
PREAMBLE_	Frame Format	0x0A	0x02: FFB	0x00	Transmit Frame
LENGTH					format B
LBT_ENABLE	LBT enable	0x18	0x01	0x00	
LBT_RSSI_THRESHOLD	LBT parameter	0x2A	0x50	0x50 (80)	80 (50-110)
		0/12/1	ence e		[-dBm]
					• •
LBT_MAX_ATTEMPT	LBT parameter	0x2B	0x05	0x05	5 (3-8)
LBT_BO_PERIOD	LBT parameter	0x2C	0x04	0x04	4 (=40 ms)
	parameter	0	0.001	5.01	In 10 ms step
LBT_BO_FLAT	LBT parameter	0x2D	0x03	0x03	3 (1-8)
LBT_MAX_DELAY	LBT parameter	0x2E	0x4B	0x4B (75)	750 (=75)
	parameter	S.LL			250 to 1000
					ms, in 10 ms
					step

LBT algorithm

The LBT algorithm is used to back off and delay the RF transmission in case the channel is already occupied. If the channel is occupied (i.e. the RSSI value is above the threshold), the module will back off for some time, before doing a new attempt.

The LBT algorithm us an exponentially increasing random back-off time, but with a flattening roof, with limited allowed maximum time delay, and with a maximum number of attempts. The algorithm may use LBT override if the maximum time and attempt limit is reached (configurable).

The following parameters configure the LBT:

- LBT_RSSI_THRESHOLD if the RSSI is above (stronger signal) than this threshold, the channel is considered occupied
- LBT_MAX_ATTEMPT maximum number of attempts before giving up, or transmitting anyway (override)
- LBT_BO_PERIOD the time used to calculate the back-off time
- LBT_BO_FLAT a parameter to limit the exponential increase of back-off time

Page 3 of 9

• LBT_MAX_DELAY - the maximum delay before giving up, or transmitting anyway (override)

The values given in the table above are the default values recommended by CIG.

It is also possible to override the LBT. That is; if after the maximum number of attempts or the maximum delay is reached, and the channel is still not free, - then transmit anyway. This is controlled by the application by sending the 0xFA command, before the message data is sent to the module. It applies only for one message and is automatically cleared after this one transmission.

If the LBT algorithm fails (channel is not free), a command/result message is sent from the module on the UART. The result message is 0x01 for failure. After successful TX, the 0x00 is sent. This result message is sent always when LBT is enabled, even if it is overridden.

Below are some figures showing the operation of the LBT algorithm. The plots show the following signals (from top down):

- UART RXD data to transmitter (message to be transmitted)
- LBT active on transmitter
- TX on transmitter
- UART TXD on transmitter (acknowledge successful / unsuccessful LBT)
- RX on receiver
- UART TXD on receiver (received message)
- Jammer signal

500 M Samples	• © 24 h	Hz •	Start			Yestille		-		1		and the same				Options +
+20 ms									+50 ms							+60 ms +
0 - TX_ROD 1 - TX_LED0 (R:		1-1-1												Wid Perio	feasurements th: ### od: ### uency: ### ### ### - T2 = ###	107
						5-4 									nalyzers	97
2 - TX_LED1 (T)																
3 - TX_TXD		(
4 - RX_LEDO (R)	(LED)	(-,1,_)														
S - RX_TND		1														
6 - JAMMER TX																
7 - Channel 7		(
9																

Figure 1. LBT with no jammer. Message is sent immediately.

APPLICATION NOTE: AN019

Figure 2. LBT with jammer. Message is not sent.

500 M Samples ▼ © 24 MHz ▼	Start +0,7 s +0,8 s	0.0 s •0.9 s	-0,1 , -0,2 ,	•0,3 s •0,4 s	-0,5 s +0,5 s	+0,7 s +0,8 s	-0,9 x .	+0,1 s	+0,2 s +0,3 s	Options+ +0,4 s
8-1X,800 5 10 10										10
1 - TX_LEDO (RX LED)									T1 - T2 = ###	97
- 2 - TX,LED1 (TX LED)										
3-1X,1X0 2-1X-										
4 - RX_LEDO (RX LED) F										
5-8X,TXD										
6 - JAMEMER TX LED										
7 - Channel 7										
· .						100				,

Figure 3. LBT with jammer. Message is sent by override.

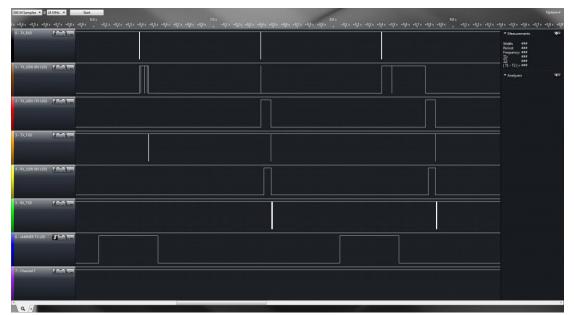


Figure 4. LBT with pulse jammer. a) Message is not sent, b) message is sent, c) message is sent when channel becomes free.

Category 1

The EN 300 220 standard describes categories of receiver performances. The category 1 is the best in terms of selectivity and blocking properties. In a real life scenario, the selectivity may be more important than the sensitivity of the radio. In this case the Category 1 radio performance setting can be selected.

Category 1 means:

- Adjacent channel selectivity > 55 dB
- Blocking rejection > 84 dB at 2MHz and 10 MHz offset
- Spurious response rejection > 60 dB

The Data Sheet shows the sensitivity for Category 1 settings vs the default setting (optimized for sensitivity).

RF channel and data rate

The default radio channel and data rate is configured by the configuration parameters in the table above, and is stored in Flash. It is possible to change the radio channel, without storing to Flash, by using the 'C' command.

The RF channel and data rate can be configured freely, that is, there is no limitation of the combinations (as there is in EN13757-4).

RF output power

The default RF output power is configured by the configuration parameter PA_TABLE_EXTENDED in the table above, and is stored in Flash. It is possible to change the output power, without storing to Flash, by using the 'P' command. The 'P' command should be used for dynamic adjustment of the output power, as there is a write cycle limit if writing to Flash.

Page 6 of 9

If PA_TABLE_EXTEDED is set to 0, then the output power is controlled by RF_POWER in 5 steps. This is the default setting, in order to be backward compatible. These five steps are specified in the Data Sheet.

If PA_TABLE_EXTEDED is set to > 0, then this extended setting will take precedence, and set the new default output power. The output power can be set in 20 small steps, also using the 'P' command.

The output power is given, approximately, by the following equation: P_out = (PA_TABLE_EXTENDED -1) x 3dB -27 dBm

RC1701HP-MBUS4 gives 27 dBm for both steps 19 and 20. RC1701VHP-MBUS4 gives 30 dBm for step 20.

Page **7** of **9**

Document Revision History

Document Revision	Changes
1.0	First release
1.1	Design Update

Disclaimer

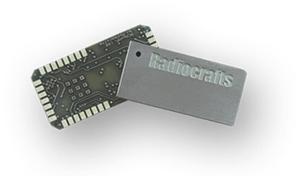
Radiocrafts AS believes the information contained herein is correct and accurate at the time of this printing. However, Radiocrafts AS reserves the right to make changes to this product without notice. Radiocrafts AS does not assume any responsibility for the use of the described product; neither does it convey any license under its patent rights, or the rights of others. The latest updates are available at the Radiocrafts website or by contacting Radiocrafts directly.

As far as possible, major changes of product specifications and functionality, will be stated in product specific Errata Notes published at the Radiocrafts website. Customers are encouraged to check regularly for the most recent updates on products and support tools.

Trademarks

RC232[™] is a trademark of Radiocrafts AS. The RC232[™] Embedded RF Protocol is used in a range of products from Radiocrafts. The protocol handles host communication, data buffering, error check, addressing and broadcasting. It supports point-to-point, point-to-multipoint and peer-to-peer network topologies.

All other trademarks, registered trademarks and product names are the sole property of their respective owners.


Life Support Policy

This Radiocrafts product is not designed for use in life support appliances, devices, or other systems where malfunction can reasonably be expected to result in significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Radiocrafts AS customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Radiocrafts AS for any damages resulting from any improper use or sale.

© 2017, Radiocrafts AS. All rights reserved.

Page 8 of 9

For More Information, Please Visit Our Website!

www.radiocrafts.com Email: sales@radiocrafts.com Tel: +47 4000 5195