

PRESENTATION WILL START IN AT 10AM CEST

Radiocrafts

Tips and tricks to achieve low power in radio networks 2019-10-24

Tips and tricks to achieve low power in radio networks, October 24th 2019

Orjan Nottveit, R&D Director

House-keeping

- The seminar today is scheduled for 30 minutes with a 10-15 minutes Q&A afterwards.
- Please introduce yourselves in the chat window, so we know who is listening
- Post your questions in the chat window during the seminar, and we will answer as good as we can in the Q&A session.
- We will post a recorded version of the webinar on our website after the webinar, if you want to go back and see it again.

Agenda

- How to calculate power consumption/battery lifetime
 - The different contributors to power consumption
- How to increase battery lifetime
 - Tips and tricks
 - Trade-offs

What influences power consumption

Receive
Transmit
Joining commissioning
Processing
Network maintenance
Operating system
Sleep current

Sleep current

- Process and technology dependent
- Typical in order 500 nA to 5 uA
 - Amount of flash
 - RTC crystal running
- Short range radio 0.5-3 uA
- NB-IoT 3-5 uA

Operating system

- Operating system can in some case give an extra power consumption
- This is caused by operating system performing updates, internal service maintenance every now and then
- For OS in MCU device it should be 0 uA to 2 uA

Network maintence

- Network maintenance is transmissions and reception used to let other devices now that its still present. There can also be some keep alive message
- More used in mesh network, but also used on star network
- With high data traffic the network maintenance traffic can be reduced

Processing

- All battery operated devices have a function in addition to send and receive data
- This can be to read a sensor or to control a device
- But it can also be to process data and to mist computing
 - This is specifically important in relationship with next slides on current transmit current consumption

• Example

- If one monitor a chair usage and have a sensor to determine if it in in use or not.
- This sensor is read every 2 minute. But to send 1 bit of information every 2 minutes is poor choice. Save up 30 samples and send every 1 hour. This will increase battery lifetime with 10x

Joining commisioning

- Joining process can take a lot of current as normally sleeping device are continuously listening
- Important design requirement \rightarrow Make a mechanism to prevent device entering joining process during storage/transport.
 - Start joining on button, NFC etc.
 - Plastics strip to prevent battery connection
 - Etc.

Transmit

• The energy used to transmit data is

TX-current x TX time Time between transmissions

 TX current is given by chipset and technical solution chosen

• TX time is given by

Number of bytes to send + Overhead

Data rate

TX current

- Here each developer must make tradeoffs vs application
- Long range \rightarrow TX current and/or TX time goes up
- High update rate, quick responsiveness
 Time between transmissions goes down
- Long range + high update rate = huge batteries.

TX current - Antenna

- By using a good external antenna, the output power can be reduced while maintaining range.
- Output power can be reduced as much as 50% with a good antenna vs a minimized internal antenna

TX current - Mesh

- By using a mesh backbone network the range from a battery-operated node to the next node can be made small, while the overall coverage is still large.
- This is a trade off between long battery lifetime and infrastructure cost

Fast To Market Proven Quality
and and the
Alecter

Transmit current consumption comparison

Technology	Bit rate [kb/s]	Time to send 20 bytes packet [ms]	TX current [mA]	Energy per packet Milliamp* millisecond [mAmS]
RIIoT (50 kb/s)	50	4.5	26	117
RlloT Long range mode (5 kb/s)	5	45	26	1170
RIIM	50	9.35	26	243
LoRAWAN	0.298	1350	47	63450
Sigfox (EU)	0.100	1500	59	88500
169 MHz Wireless M- Bus	2.4	67	400	26800
868 MHz Wireless M- Bus	100	3.5	26	65
NB-IoT	6	177	220	38940

Typical RIIoT currents

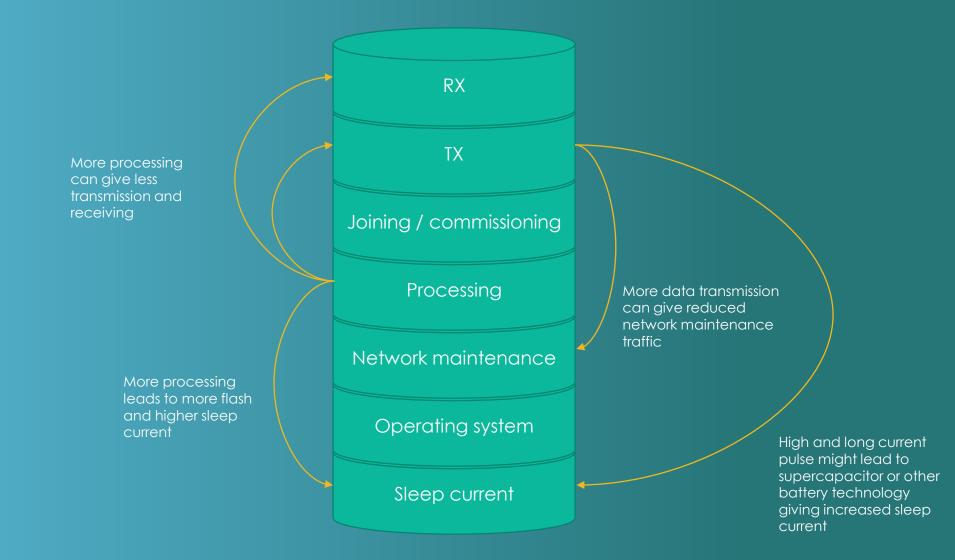
– TX: 26.5 mA @14 dBm, RX: 6.2 mA,

- Sleep (RTC on) 0.7uA, Shutdown, 0.185uA

CMWX1ZZABZ-078 from Murata
 RC1682-SIG from Radiocrafts
 Quectel B95 154 dB attenuation

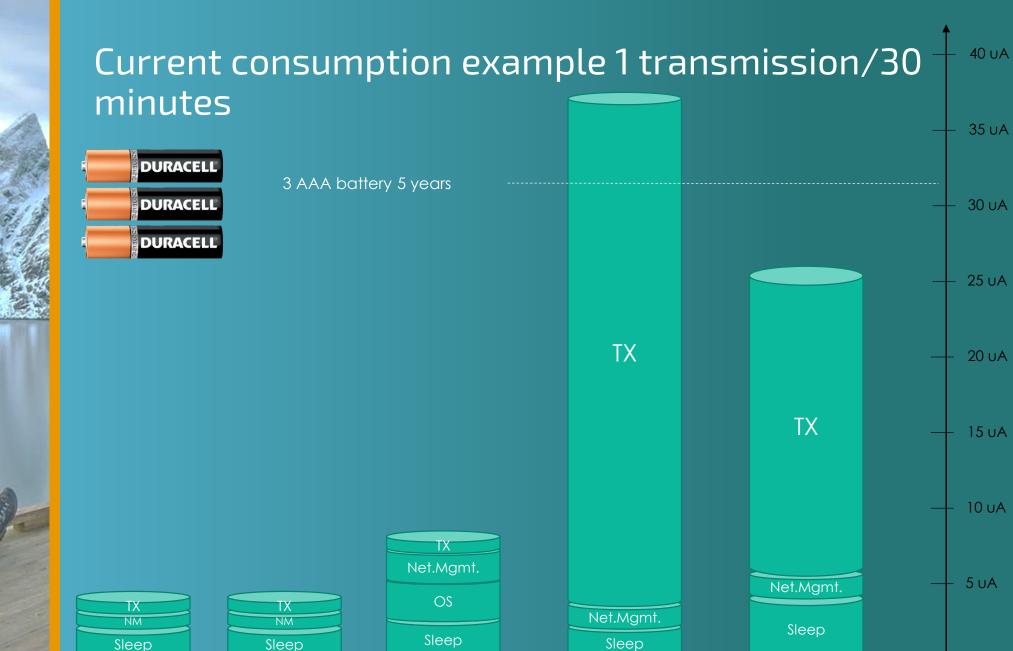
High peak current

- All battery have limitation in pulse current
 - Coincell < 20 mA
 - AA < 150 mA
- Using the batteries close to max pule give significant voltage drops
- Solution :Supercap/EDLC/HLC
 - Leakage ~1-4 uA
- Also applies to lower, but longer current peaks.


Receive current

- LBT Listen Before Talk
- ACK Acknowledgement
- (Retransmisson)
- Two way communication
- LoRAWAN/Sigfox and Wireless M-Bus normally avoid two way communication
 - Save current
 - Avoid capacity reduction in GW
 - Regulatory reasons
- NB-IoT spend more time in RX to syncronize than the other un-syncrone protocols

Confusing part – element effect each other



Current consumption example 1 transmission/hour

RIIM

LORAWAN

297 b/s

NB-IoT

Wireless

M-Bus

RIIOT

Summary – how to increase battery lifetime

- Send less data TX current is normally the biggest contributor
 - Trade off vs. update rate
 - Store and send larger amount (30-60 bytes)

• Trade off vs. reliability

- Do you need confirmation
- Do you need retransmission

• Trade off vs. range

- What is the actual range needed
- Main powered mesh can give same coverage but less range for battery operated sensors
- Local processing can significantly reduce data traffic
- Use a good antenna and reduce output power
 - Trade off vs. design/size
- Mesh can combine large coverage and low power end devices
 - Trade off vs. infrastructure cost

Thank you for the attention