

2018 Radiocrafts AS

SPR Tutorial 1:

Button, LED and Timer
v1.0, August 2, 2018

2018 Radiocrafts AS SPR Tutorial 1: Button, LED, Timers

 SPR Tutorial 1

Page 1 of 9

Table of Contents
1 INTRODUCTION .. 2

2 SETUP .. 2

2.1 HARDWARE SETUP .. 2

3 CODING .. 3

3.1 INCLUDE THE SPR HEADER FILE .. 3

3.2 MAP THE BUTTON AND LED TO GPIOS .. 3

3.3 DECLARE THE TIMER .. 3

3.4 THE SETUP() ... 4

3.5 THE BUTTON HANDLER .. 4

3.6 TIMER HANDLER .. 5

3.7 FULL SOURCE CODE ... 6

4 REVISION HISTORY .. 7

DISCLAIMER .. 9

TRADEMARKS ... 9

LIFE SUPPORT POLICY .. 9

RADIOCRAFTS SUPPORT: ... 9

CONTACT RADIOCRAFTS ... 9

List of Tables
No table of figures entries found.

List of Figures
No table of figures entries found.

Abbreviations
Abbreviation Description
SPR Radiocrafts Software-Programmable RF Module
RIIoT Radiocrafts Industrial Internet of Things

2018 Radiocrafts AS SPR Tutorial 1: Button, LED, Timers

 SPR Tutorial 1

Page 2 of 9

1 Introduction
In this tutorial, you will develop a simple application that blinks a LED. Pressing a button starts or stops
the blinking of the LED.

You will learn:
• How to connect a button to a GPIO input.
• How to connect a LED to a GPIO output
• How to configure pullup or pulldown of a GPIO
• How to handle events based on GPIO input (e.g. rising or falling edge)
• How to use a timer
• How to use UART print statements to debug your application

This short tutorial introduces you to the basics of interfacing GPIO and using timers. When you finish this,
you can go on to other tutorials that show how to connect to a network and other interfaces like I2C, SPI,
ADC.

2 Setup

For this tutorial, you will need:

• RC1880 Sensor Board
• a button switch

In addition, you need the compiler and flashing tool as introduced in the Getting Started Guide. So if you
have not read it, please start there first.

2.1 Hardware Setup
Connect one end of the button to GPIO_8 (module pin 34). Connect the other end to ground.

When the button is pressed, it will short to ground and pull the signal on the pin low. Later when we

configure the GPIO pin, we will configure it with an internal pull-up so that the signal is normally high until

the button is pressed.

For the LED, the application will use the green LED on the sensor board that is connected to GPIO_0 on the

module.

2018 Radiocrafts AS SPR Tutorial 1: Button, LED, Timers

 SPR Tutorial 1

Page 3 of 9

For all the GPIO pins available for the module, read the section on GPIO in SPR Platform User’s Guide

3 Coding
The tutorial will build up the application code step by step, but you can skip to see to the full source code
in 3.7. You can also grab the full source code in the example folder, in the file
tutorial1_button_blink_led.c.

3.1 Include the SPR header file
In your SPR SDK project folder, start a new source file app.c.

You can name your source file however you like, but then remember to modify the SOURCE_FILES option in the file
user_build_options.ini with the name of your file so the compiler knows which file to compile.

The top of every SPR application must include the header file spr_app.h where all the APIs are declared.

#include "spr_app.h"

3.2 Map the Button and LED to GPIOs
Next we create constant macros to map the button and LED to the correct GPIO pins.

/********* Constants ***********/

#define BUTTON_0 GPIO_8

#define LED_0 GPIO_0

With the macros defined, you can now reference the button and LED in the rest of the code without
remembering which GPIO pin they are connected to.

3.3 Declare the timer
We will declare a variable for our timer. We will later use this variable when creating, starting and stopping
the timer.

/********* File-scope Variables ****************/

static TimerId ledBlinkTimer;

static just means that we can access this timer variable anywhere within this file, but not outside your file.

2018 Radiocrafts AS SPR Tutorial 1: Button, LED, Timers

 SPR Tutorial 1

Page 4 of 9

3.4 The Setup()
Next, you write the function Setup(), which is called whenever the module starts. Here you can configure
the GPIOs for the button and the LED, and also register a handler function for button press. Let’s take a
look.

void Setup()

{

 Debug.printf("My Setup\r\n"); (1)

 // setup the button GPIO and event detection

 GPIO.setDirection(BUTTON_0, INPUT);

 GPIO.setPull(BUTTON_0, PULL_UP); (2)

 GPIO.setHandler(BUTTON_0, FALLING_EDGE, buttonHandler); (3)

 // setup the LED

 // no pull up is set. it uses output push-pull

 GPIO.setDirection(LED_0, OUTPUT);

 // initialize to off

 GPIO.setValue(LED_0, LOW);

 // create the timer

 ledBlinkTimer = Timer.create(PERIODIC, 500*MILLISECOND, ledBlinkTimerHandler); (4)

}

(1) This will be printed on your UART COM port to show whenever the application starts.
(2) Configure the GPIO with an internal pull up, so it is normally high. When the button is pressed, it

shorts the signal to low
(3) Configures the button GPIO to call the function buttonHandler when the pin triggers on any

falling edge (from high to low). We will implement the handler in the next section
(4) This creates a periodic timer that calls the function ledBlinkTimerHandler every 500

milliseconds.

3.5 The Button Handler
Next we implement the button handler. Pressing the button toggles between starting and stopping the
blinking timer.

Add the following code after Setup().

static void buttonHandler(enum GPIO_Pin pin, enum GPIO_InterruptEdge edge)

{

 Debug.printline("Button value=%d", GPIO.getValue(BUTTON_0));

 if (Timer.isActive(ledBlinkTimer)) {

 Timer.stop(ledBlinkTimer);

2018 Radiocrafts AS SPR Tutorial 1: Button, LED, Timers

 SPR Tutorial 1

Page 5 of 9

 Debug.printline("Start blinking");

 } else {

 Timer.start(ledBlinkTimer);

 Debug.printline("Stop blinking");

 }

}

A function declared as static just means that the function can only be called within this file. It is the C
language’s way to make a function private.

Debug.printline follows the same format specifiers as the standard printf in C. In this code, the %d
specifier in value=%d means that GPIO.getValue(BUTTON_0) will be inserted here and printed as a decimal
integer. Other specifiers include %s for string, %s for hex.

3.5.1 Declaring the Handler

Because the buttonHandler() comes after Setup(), ìt must be declared before Setup() so the code
within Setup() knows how to reference to it.

Add the following line before Setup()

/********* Private Function Declarations ****************/

static void buttonHandler(enum GPIO_Pin pin, enum GPIO_InterruptEdge edge);

Don’t forget the semi-colon ; at the end of the line!

3.6 Timer Handler
The timer handler is called whenever the timer triggers (every 500ms). It toggles the LED.

Add the following code after the button handler:

static void ledBlinkTimerHandler()

{

 GPIO.toggle(LED_0);

}

Then add the declaration of the handler before Setup(). Your list of declared functions should now look
like this:

/********* Private Function Declarations ****************/

static void buttonHandler(enum GPIO_Pin pin, enum GPIO_InterruptEdge edge);

2018 Radiocrafts AS SPR Tutorial 1: Button, LED, Timers

 SPR Tutorial 1

Page 6 of 9

static void ledBlinkTimerHandler();

3.7 Full Source Code
The full source code should look like below. You can also grab the full source code in the example folder,
in the file tutorial1_button_led.c.

#include "spr_app.h"

/********* Constants ***********/

#define BUTTON_0 GPIO_8

#define LED_0 GPIO_0

/********* Private Variables ****************/

// These are variables that can be shared between functions in this file.

// static int counter = 0;

static TimerId ledBlinkTimer;

/********* Private Function Declarations ****************/

// These are event handlers that will be implemented later in the file, but

// are declared here so Setup() can reference them when registering events.

static void button0Handler(enum GPIO_Pin pin, enum GPIO_InterruptEdge edge);

static void ledBlinkTimerHandler();

/********* Public Functions ****************/

/**

* Setup() is called by the framework on startup

*/

void Setup()

{

 Debug.printline("My Setup");

 // Configure GPIO for Button 0

 GPIO.setDirection(BUTTON_0, INPUT);

 GPIO.setPull(BUTTON_0, PULL_UP);

 GPIO.setHandler(BUTTON_0, FALLING_EDGE, button0Handler);

 // Configure GPIO for LED 0

 GPIO.setDirection(LED_0, OUTPUT);

 GPIO.setValue(LED_0, LOW);

 // create timer

 ledBlinkTimer = Timer.create(PERIODIC, 500*MILLISECOND, ledBlinkTimerHandler);

}

/********* Private Functions ****************/

static void button0Handler(enum GPIO_Pin pin, enum GPIO_InterruptEdge edge)

{

 Debug.printline("Button value=%d", GPIO.getValue(BUTTON_0));

2018 Radiocrafts AS SPR Tutorial 1: Button, LED, Timers

 SPR Tutorial 1

Page 7 of 9

 if (Timer.isActive(ledBlinkTimer)) {

 Timer.stop(ledBlinkTimer);

 Debug.printline("Timer stop");

 } else {

 Timer.start(ledBlinkTimer);

 Debug.printline("Timer start");

 }

}

static void ledBlinkTimerHandler()

{

 Debug.printline("Blink");

 GPIO.toggle(LED_0);

}

4 Compile and Test
Compile and flash the application using the same steps introduced in the Getting Started Guide.

Open a serial terminal so you can see the debugging statements.

Try it out. Press the button. See if the LED blinks!

5 What's Next

Congratulations on completing this tutorial!

You can read the SPR Platform User’s Guide for more details on the API for GPIO.

The next tutorial will show you how to connect the module to a network.

2018 Radiocrafts AS SPR Tutorial 1: Button, LED, Timers

 SPR Tutorial 1

Page 8 of 9

6 Revision History
Revision Date Changes
V1.0 August 2, 2018 For release

2018 Radiocrafts AS SPR Tutorial 1: Button, LED, Timers

 SPR Tutorial 1

Page 9 of 9

Disclaimer

Radiocrafts AS believes the information contained herein is correct and accurate at the time of this printing.
However, Radiocrafts AS reserves the right to make changes to this product without notice. Radiocrafts AS does not
assume any responsibility for the use of the described product; neither does it convey any license under its patent
rights, or the rights of others. The latest updates are available at the Radiocrafts website or by contacting
Radiocrafts directly.

As far as possible, major changes of product specifications and functionality, will be stated in product specific
Errata Notes published at the Radiocrafts website. Customers are encouraged to check regularly for the most recent
updates on products and support tools.

Trademarks

RIIoT™ is a trademark of Radiocrafts AS.
All other trademarks, registered trademarks and product names are the sole property of their respective owners.

Life Support Policy
This Radiocrafts product is not designed for use in life support appliances, devices, or other systems where
malfunction can reasonably be expected to result in significant personal injury to the user, or as a critical
component in any life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or system, or to affect its safety or effectiveness. Radiocrafts AS customers using
or selling these products for use in such applications do so at their own risk and agree to fully indemnify Radiocrafts
AS for any damages resulting from any improper use or sale.

Radiocrafts Support:
Knowledge base: https://radiocrafts.com/knowledge-base/
Application notes library: https://radiocrafts.com/resources/application-notes/
Whitepapers: https://radiocrafts.com/resources/articles-white-papers/
Technology overview: https://radiocrafts.com/technologies/
RF Wireless Expert Training: https://radiocrafts.com/resources/rf-wireless-expert-training/

Contact Radiocrafts
Sales requests: https://radiocrafts.com/contact/

© 2018, Radiocrafts AS. All rights reserved.

https://radiocrafts.com/knowledge-base/
https://radiocrafts.com/resources/application-notes/
https://radiocrafts.com/resources/articles-white-papers/
https://radiocrafts.com/technologies/
https://radiocrafts.com/resources/rf-wireless-expert-training/
https://radiocrafts.com/contact/

	1 Introduction
	2 Setup
	2.1 Hardware Setup

	3 Coding
	3.1 Include the SPR header file
	3.2 Map the Button and LED to GPIOs
	3.3 Declare the timer
	3.4 The Setup()
	3.5 The Button Handler
	3.5.1 Declaring the Handler

	3.6 Timer Handler
	3.7 Full Source Code

	4 Compile and Test
	5 What's Next
	6 Revision History
	Disclaimer
	Trademarks
	Life Support Policy
	Radiocrafts Support:
	Contact Radiocrafts

