Radiocrafts

Embedded Wireless Solutions

SPR Tutonal 2:

Send Periodic Network Data

v1.0, August 2, 2018

©2018 Radiocrafts AS

SPR Tutorial 2: Network Data

Table of Contents

1 INTRODUCGTIONceiuiiieiiiieiiemt i iree s renasrenssrensssranssstanssrensssransssrnnsssansssssnssrensssrensnnsnnsn 3
2 HARDWARE SETUP ...ttt stiesee e ssa s sem s s ssa s s e na s semnn s ennsssansssennsssennnnsennnnnnnnn 3
3 BEHAVIOR....... i iiiee e eee e rese s rem s s ren s s e easssranssssansaranssssanssseansssanssssnnsssanssssenssnnnnsn 3
4 010 10 |1 4
4.7 INCLUDE THE SPR HEADER FILEuuttttiieieeeeiiieiitreeeeeeeeesseessssseresessessssssssesesssessessensssseneees 4
4.2 MAP THE BUTTON AND LED TO GPIOS......coiiiiiteeiee ettt 4
4.3 DECLARE THE TIMER ...uuutvtteeeieeeeeeeettteeeeeeeeeesseesssbessessasesssassssseseseeeessasssssaseessesssssassssseneees 4
O I S LU USROS 4
4.5 HANDLER FOR NETWORK STATE CHANGEScovvvitieireeeeeeeeeeeeeeeseeeeesssssssssssssnssssssssssssnnnees 6
4.6 REPORT DATA FUNCTION ...coiiiiiiiitt ettt ettt et e e e e e e e e e e e e e e e e s e e aabeaeeeeas 6
o S U o] NI 1Y N o) = 7
4.8 HANDLE RECEIVED IMESSAGEttteiiiieee e e e ettt et e e e e e ettt e s e e e e s s e et aaae e s e e e e s s eenraaaees 7
4,9 DECLARING THE HANDLERScoitiiittteeee i e e e e e e ettt teeee e e e e e s s sasbateeeseeeessesssbaseesseseesseasssanenes 7
o I U TR Yo U= Yo7 = 6] o) =S RTRR 8
5 COMPILE AND TEST ...t ieiiiieeicriaireessrse s sesa s renssssenssssnnsssensssennsssannssrensssrenssnenn 10
6 REVISION HISTORYceeiiiiiiiiieiiriesiremeserensssenassssnsssesssssenssssensssennsssensssennsssenssssennnsenn 11
DISCLAIMER....... o ciiee e ieee e ceia e ree s reeasaremassenssrenassremsssranssssansssanasssansssannsssansssrenssrnnsnrs 12
TRADEMARKScoiiiiiiei i ree e ree s esa e ren s s ransssensssanssrensssrensssranssannssransssennssrensnnrennnrennnn 12
LIFE SUPPORT POLICY ... ceuiiieiiiiiiieecceeaiiemasses s sesasssenssssanssssansssenssssensssennssrensssrensssrnnsnne 12
RADIOCRAFTS SUPPORT :cceiiiiiiieeiiieeireeaesea s rrsnsrensssrensssransssennsssensssennsssensssrensssrnnnnns 12
CONTACT RADIOCRAFTS ... ceeuiiieiiiieiieeaireesremsseenssrernssrensssransssranssrensssssnssrennssrensssrensnrenn 12

List of Tables

No table of figures entries found.

List of Figures
No table of figures entries found.

Abbreviations
Abbreviation \ Description \
SPR Radiocrafts Software-Programmable RF Module
RlloT Radiocrafts Industrial Internet of Things

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 1 of 12

SPR Tutorial 2: Network Data

Embedded Wireless Solutions

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 2 of 12

SPR Tutorial 2: Network Data

1 Introduction

In this tutorial, you will develop an application that joins to a network, sends periodic data, and responds
to message from the coordinator.

You will learn:
e How to configure a network (frequency, channel, data rate)
e How to configure the module to start the auto-join process when it starts up
e How to be notified of network state changes (e.g. OFFLINE to ONLINE)
e How to send a message to the coordinator
e How to react to message received from the coordinator

This tutorial is a continuation of tutorial 1 where the basics of creating an application is introduced. So if
you haven't, it is recommended to start there.

2 Hardware Setup

For this tutorial, you will need:

RC1880 Sensor Board

Button that connects to GPIO_8

LED that connects to GPIO_0 (already on board)
LED that connects to GPIO_1

You will also need a coordinator. You can use any IEEE 802.15.4g coordinator that supports 868 MHz. We
recommend using Radiocraft’'s RC1880-GPR module with RlIloT Network Controller in a linux gateway.

3 Behavior

The behaviors we will be implementing are:
e Network settings: 868 MHz, 50kbps
e Automatically looks for a network to join when powering up
e aLED indicating the state of the network. ON = network online.
e Every 30 seconds, send a data packet to the coordinator. The first byte of the data packet is an
incremental counter. The data packet is also sent when the button is pressed
e Use the first byte of the message to turn on or off a LED.

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 3 of 12

SPR Tutorial 2: Network Data

4 Coding

The tutorial will build up the application code step by step, but you can skip to see to the full source code
in 4.10. You can also grab the full source code in the examp1e folder, in the file

tutorial2 network periodic data.c.

4.1 Include the SPR header file
Edit the source file app. c. Erase previous codes in the file and start again.

Needed for every app source, include the header file spr app.h where all the platform APIs are declared.

i#include "spr_app.h"

4.2 Map the Button and LED to GPIOs
Next we create constant macros to map the button and LED to the correct GPIO pins.

/********* Constants ***********/
#define BUTTON_O GPIO_8

#define LED 0 GPIO O

#define LED 1 GPIO 1

4.3 Declare the timer
We will declare a variable for our timer that tracks when to report data to the coordinator.

/********* File_scope Varlables ****************/
static TimerId reportTimer;

4.4 The Setup()
Next, you write the function setup (), which is called whenever the module starts.

Some of the code will look familiar from the previous tutorial. You will see new code that configures the
network. See the code below and the commentaries.

Evoid Setup ()
P
' Debug.printf ("My Setup\r\n'");

// Configure GPIO for Button 0
GPIO.setDirection (BUTTON 0O, INPUT);

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 4 of 12

SPR Tutorial 2: Network Data

GPIO.setPull (BUTTON 0, PULL UP);
GPIO.setHandler (BUTTON 0O, FALLING EDGE, buttonOHandler);

// Configure GPIO for LED 0
GPIO.setDirection(LED 0, OUTPUT) ;
GPIO.setValue (LED 0, LOW);

// Configure GPIO for LED 1
GPIO.setDirection(LED 1, OUTPUT);
GPIO.setValue (LED 1, LOW);

// Configure the network
Network.setFregBand (FREQ 868 MHZ); (1)
Network.setDataRate (DATA RATE 50 KBPS); (2)

uint8 t channelMask[CHANNEL BITMAP SIZE] = {0x00,}; (3)
channelMask[0] = OxFF; //scans channels 0-7
Network.setChannelMask (channelMask) ;

Network.setNetworkStateChangeHandler (networkStateChangedHandler); (4)
Network.setReceivedMessageHandler (receivedMessageHandler); (5)
Network.setAutoJoin(true); (6)

// create the timer to report data
reportTimer = Timer.create (PERIODIC, 30*SECOND, reportData); (7)

(1) Choose between FREQ_868_MHZ and FREQ_915_MHZ

(2) Choose between DATA_RATE_5_KPBS and DATA_RATE_5_KBPS. DATA_RATE_5_KBPS is not part of
the IEEE 802.15.4 standard, but it provides longer range.

(3) The channel mask determines the channels to scan when joining a network. Channels 0-33 are
available when using 863 MHz; channels 0-128 are available when using 915 MHz. Each bit in the channel
mask represents a channel. In this example, only the first 8 channels are scanned. So it initializes the
whole array to 0, and only enables the first 8 bit.

(4) When the network state changes, it will call the function networkstateChangedHandler, which you
will implement later.

(5) When a message is received, it will call the function receivedMessageHandler

(6) Enables auto-join, which will start the join process whenever the module powers up or whenever the
network state becomes offline. If the join fails, the module periodically retries. Alternatively, if you don't
enable auto-join, you can call Network.join () based on an user input (e.g. button push).

(7) Creates the timer that will call the function reportpata every 30 seconds.

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 5 of 12

SPR Tutorial 2: Network Data

4.5 Handler for Network State Changes
We will now add the implementation for networkStateChangdHandler (), the function we registered
within setup () to be called whenever the network state changes.

In the handler, we will turn LED 0 on or off, start or stop the report timer according to the network state.

static void networkStateChangedHandler (NetworkState state)

{
Debug.printf ("Network State: %s\r\n'", NetworkStateString[statel]); (1)

if (ONLINE == state) {
Debug.printline("PanlId=%2x Ch=%d ShortAddr=%2x", Network.getPanId(),
Network.getChannel (), Network.getShortAddress()); (2)
GPIO.setValue(LED 0, HIGH); (3)
Timer.start (reportTimer); (4)
} else {
GPIO.setValue(LED 0, LOW);
Timer.stop (reportTimer) ;

(1) NetworkStateString[state] returns a string for the network state enum. E.g. ONLINE

(2) This shows how to get the PAN ID, the channel, and node’s short address after it joined the network.
(3) Turns LED on if network state is online

(4) Start the report timer if network state is online

The possible network states are OFFLINE, JOINING, ONLINE, REJOININ

4.6 Report Data Function
We will now implement the function that reports the data to the coordinator. This function is called by the
timer every 30 seconds. It will also be called when the button is pressed.

Add the following code after setup ().

static void reportData(void)
{
Debug.printline ("Report Data cnt=%d", dataCounter);
uint8 t datal[] = {dataCounter,0xAA,0xBB,0xCC,0xDD,0xEE,0xFE}; (1)
Network.send(sizeof (data), data); (2)
dataCounter += 1; (3)

(1) Prepares a 7 byte data packet, where the first byte is the counter

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 6 of 12

SPR Tutorial 2: Network Data

(2) Note that you don't need a destination address. This is a star topology network. All data packets go to
the coordinator.
(3) Increments the counter.

4.7 Button Handler
Implement the button handler, so that when it is pressed, it also calls reportpata () to send a data
packet to the coordinator.

static void buttonOHandler (enum GPIO Pin pin, enum GPIO InterruptEdge edge)

{
Debug.printf ("Button 0 Pressed!\r\n");
NetworkState networkState = Network.getNetworkState() ;

if (ONLINE == networkState) {
reportData() ;
}

4.8 Handle Received Message
Implement receivedMessageHandler (), Where we registered in setup () to handle received messages.
The function takes 2 parmeters as input: the length of the message, and the message byte array.

It sets the state of LED 1 based on the first byte of the received message.

static void receivedMessageHandler (uint8 t len, uint8 t messagel[])
{
Debug.printf ("Received message len=%d data= ", len);
Debug.printArray(len, message); (1)
// set the LED 1 according to the 1lst byte of the message

if (message[0] == 0x01)
GPIO.setValue(LED 1, HIGH);
else

GPIO.setValue(LED 1, LOW);

(1) This is a special debug print function to print a byte array in hex.

4.9 Declaring the Handlers
The compiler needs all the functions to be declared at the top of the file. So add the following declarations
before setup ()

E/********* Private Function Declarations **xxx*xkkkxxxkxkkkx /
i static void buttonOHandler (enum GPIO Pin pin, enum GPIO InterruptEdge edge);
i static void networkStateChangedHandler (NetworkState state);

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 7 of 12

SPR Tutorial 2: Network Data

Embedded Wireless Solutions

static void receivedMessageHandler (uint8 t len, uint8 t *message);

i static void reportData(void);

4.10 Full Source Code

The full source code should look like below. You can also grab the full source code in the examp1e folder,
inthef”etutorial2_network_periodic_data.Q

#include "spr app.h"

/********* Constants ***********/
#define BUTTON 0 GPIO 8

#define LED O GPIO 0

#define LED 1 GPIO 1

/********* Private variables ****************/
static TimerId reportTimer;
static uint8 t dataCounter = 0;

[**xxxxxxx Private Function Declarations ***xxxxxkkkkkkkk /

// These are event handlers that will be implemented later in the file, but

// are declared here so Setup() can reference them when registering events.

static void buttonOHandler (enum GPIO Pin pin, enum GPIO InterruptEdge edge);
static void networkStateChangedHandler (NetworkState state);

static void receivedMessageHandler (uint8 t len, uint8 t *message);

static void reportData(void) ;

/********* Publlc Functions ****************/

/**

* Setup () 1s called by the framework on startup
*/

void Setup()

{

Debug.printf ("User Setup\r\n");

// Configure GPIO for Button 0
GPIO.setDirection (BUTTON 0O, INPUT);

GPIO.setPull (BUTTON 0, PULL UP);

GPIO.setHandler (BUTTON 0O, FALLING EDGE, buttonOHandler);

// Configure GPIO for LED 0
GPIO.setDirection(LED 0, OUTPUT) ;
GPIO.setValue (LED 0, LOW);

// Configure GPIO for LED 1
GPIO.setDirection(LED 1, OUTPUT) ;
GPIO.setValue (LED 1, LOW);

// Configure the network

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 8 of 12

M SPR Tutorial 2: Network Data

Embedded Wireless Solutions

Network.setFregBand (FREQ 868 MHZ) ;
Network.setDataRate (DATA RATE 50 KBPS);

uint8 t channelMask[CHANNEL BITMAP SIZE] = {0x00,};
channelMask[0] = OxFE; //scans channels 0-7
Network.setChannelMask (channelMask) ;
Network.setNetworkStateChangeHandler (networkStateChangedHandler) ;
Network.setReceivedMessageHandler (receivedMessageHandler) ;
Network.setAutoJoin (true) ;

// create the timer to report data
reportTimer = Timer.create (PERIODIC, 30*SECOND, reportData);

}

/********* Private Functions ****************/
static void networkStateChangedHandler (NetworkState state)

{
Debug.printline("Network State: %s", NetworkStateString[state]);

// set the LED 0 according to network state
if (ONLINE == state) {
Debug.printline("Panld=%2x Ch=%d ShortAddr=%2x", Network.getPanId(),
Network.getChannel () , Network.getShortAddress());
GPIO.setValue(LED 0, HIGH);
Timer.start (reportTimer) ;
} else {
GPIO.setValue(LED 0, LOW) ;
Timer.stop (reportTimer) ;

}

static void reportData(void)

{
Debug.printline ("Report Data cnt=%d", dataCounter);

uint8 t data[] = {dataCounter,OxAA,0xBRB,0xCC,0xDD,0xEE, 0xFE} ;
Network.send(sizeof (data), data);
dataCounter += 1;

}

static void buttonOHandler (enum GPIO Pin pin, enum GPIO InterruptEdge edge)
{

Debug.printline("Button 0 Pressed!");

NetworkState networkState = Network.getNetworkState() ;

if (ONLINE == networkState) {
reportData() ;
}
}

static void receivedMessageHandler (uint8 t len, uint8 t messagel[])

{

Debug.printf ("Received message len=%d data= ", len);
Debug.printArray(len, message);

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 9 of 12

M SPR Tutorial 2: Network Data

Embedded Wireless Solutions

// set the LED 1 according to the 1st byte of the message

if (message[0] == 0x01)
GPIO.setValue(LED 1, HIGH);
else

GPIO.setValue(LED 1, LOW);

5 Compile and Test

Compile and flash the application using the same steps introduced in the Getting Started Guide.
Open a serial terminal so you can see the debugging statements.

Start a network on the coordinator. Open permit join on the network. Then restart your SDM module to
check if it joins!

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 10 of 12

Embedded Wireless Solutions

6 Revision History

SPR Tutorial 2: Network Data

Revision
V1.0

August 2,2018

Changes
For release

©2018 Radiocrafts AS

SPR Tutorial 2: Send Periodic Network

Page 11 of 12

SPR Tutorial 2: Network Data

Disclaimer

Radiocrafts AS believes the information contained herein is correct and accurate at the time of this printing.
However, Radiocrafts AS reserves the right to make changes to this product without notice. Radiocrafts AS does not
assume any responsibility for the use of the described product; neither does it convey any license under its patent
rights, or the rights of others. The latest updates are available at the Radiocrafts website or by contacting
Radiocrafts directly.

As far as possible, major changes of product specifications and functionality, will be stated in product specific
Errata Notes published at the Radiocrafts website. Customers are encouraged to check regularly for the most recent
updates on products and support tools.

Trademarks

RlloT™ is a trademark of Radiocrafts AS.
All other trademarks, registered trademarks and product names are the sole property of their respective owners.

Life Support Policy

This Radiocrafts product is not designed for use in life support appliances, devices, or other systems where
malfunction can reasonably be expected to result in significant personal injury to the user, or as a critical
component in any life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or system, or to affect its safety or effectiveness. Radiocrafts AS customers using
or selling these products for use in such applications do so at their own risk and agree to fully indemnify Radiocrafts
AS for any damages resulting from any improper use or sale.

Radiocrafts Support:

Knowledge base: https://radiocrafts.com/knowledge-base/

Application notes library: https://radiocrafts.com/resources/application-notes/
Whitepapers: https://radiocrafts.com/resources/articles-white-papers/

Technology overview: https://radiocrafts.com/technologies/

RF Wireless Expert Training: https://radiocrafts.com/resources/rf-wireless-expert-training/

Contact Radiocrafts

Sales requests: https://radiocrafts.com/contact/

© 2018, Radiocrafts AS. All rights reserved.

©2018 Radiocrafts AS SPR Tutorial 2: Send Periodic Network Page 12 of 12

https://radiocrafts.com/knowledge-base/
https://radiocrafts.com/resources/application-notes/
https://radiocrafts.com/resources/articles-white-papers/
https://radiocrafts.com/technologies/
https://radiocrafts.com/resources/rf-wireless-expert-training/
https://radiocrafts.com/contact/

	1 Introduction
	2 Hardware Setup
	3 Behavior
	4 Coding
	4.1 Include the SPR header file
	4.2 Map the Button and LED to GPIOs
	4.3 Declare the timer
	4.4 The Setup()
	4.5 Handler for Network State Changes
	4.6 Report Data Function
	4.7 Button Handler
	4.8 Handle Received Message
	4.9 Declaring the Handlers
	4.10 Full Source Code

	5 Compile and Test
	6 Revision History
	Disclaimer
	Trademarks
	Life Support Policy
	Radiocrafts Support:
	Contact Radiocrafts

